
Fast Polynomial Root Finder, Part One

1 5 October 2023

Fast Polynomial Root Finder, Part One.
By Henrik Vestermark (hve@hvks.com)

Abstract:
In general Newton’s method for finding roots of polynomials is an effective and easy algorithm
to both implement and use. However certain weakness is exposed when trying to find roots in a
polynomial with multiple roots. This paper highlights the weakness and devises a modification to
the general Newton algorithm that can effectively cope with the multiple roots issue and deal
with the usual pitfalls in using the Newton method to find polynomial roots. This paper is part of
a multi-series of papers on how to use the same framework to implement different root finder
methods.

Introduction:
Newton’s method for finding the roots of polynomials is one of the most popular and simple
methods. Newton’s methods use the following algorithm to progressively find values closer and
closer to the root.

𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)

By finding one root at a time. There exist other methods that progressively iterate towards all
roots simultaneously. These are methods like Aberth-Ehrlich or Durand-Kerner. However, they
have other issues that make them less desirable to implement. Of course, there are many other
methods to consider. Among them are Halley, Householder 3rd order, Ostrowski, Laguerre,
Graeffe, Jenkins-Traub(most likely the most famous), Eigenvalue method, and many others. All
of these methods are available in a fast and stable version. Readers can look at [1] that go
through 20+ different method and their implementation. For now, I will just go over the practical
implementation for a robust and stable root finder using Newton’s method. We will furthermore
require that the Polynomial have complex coefficients. The algorithm is the same regardless of
whether the Polynomial has real (part two) or complex coefficients (this paper).

Fast Polynomial Root Finder, Part One

2 5 October 2023

Contents
Fast Polynomial Root Finder, Part One. ... 1

Abstract: .. 1

Introduction: .. 1

The task at hand .. 2

The issue with Newton’s method:... 3

The multiple roots issue .. 3

What to do about multiple roots with the Newton iteration? .. 6

A suitable starting point for root finders ... 7

Priori for the root with the smallest magnitude. ... 7

Evaluation of the Polynomial at a complex point. .. 8

A suitable stopping criterion for a root. .. 8

Error in arithmetic operations: .. 9

A simple upper bound: .. 9

A better upper bound. ... 9

Grant & Hitchins stopping criteria for polynomials with complex coefficients 9

Deflation strategy .. 10

The Implementation of K. Madsen Newton Algorithm .. 11

The C++ code .. 12

Example 1. .. 18

Example 2. .. 19

Conclusion .. 20

Reference .. 20

The task at hand

Finding the Polynomial roots using Newton's method is usually straightforward to implement:

𝑥௡ାଵ = 𝑥௡ −
௉(௫೙)

௉ᇱ(௫೙)

Typically, you go through these steps.

1) Eliminate Simple roots where the roots are zero.
2) Setup the Newton iteration

Fast Polynomial Root Finder, Part One

3 5 October 2023

a. Find a suitable start guess
b. Evaluate both P(xn) and P’(xn) using Horner method
c. Find the step size P(xn)/P’(xn)
d. Compute the next xn+1
e. Repeat b-d until the stopping criterion is met
f. Divide the newly founded root up in P(x) to compute the new reduced Pnew(x)
g. Repeat a-f until we are left with a first or second-degree Polynomial

3) Solve the first or second-degree polynomial directly

You will go more or less through the same steps for many of the other root-finding methods.

The issue with Newton’s method:
In itself, the Newton method is not necessarily stable but requires extra code to handle the
classical pitfalls when implemented as a robust, fast, and stable solution. By just looking at the
above formula (2) it is clear we will have an issue when P’(x) is zero or close to zero. But that is
not the only issue you will encounter. Sometimes if we hit a local minimum, you can get step
length P(x)/P’(x) that throws the search far away from any roots. It also matters where to start
the search for the root since the above algorithm will only converge to a root when you are
somehow close to the roots. The Newton method has a convergence order of two meaning that
the number of correct direct doubles for each iteration. But when trying to find a solution that
contains multiple roots e.g. (x-2)2(x-3)=0 the convergence rate drops to a linear rate requiring
many more iterations to find the root.
We would need to address the multiple root issues and ensure we maintain the convergence order
of 2 in these situations as well. At some point, we need to figure out when to stop a search and be
happy with the accuracy at the same time. Our goal is to take it to the limit of what the IEEE754
floating point standard can handle as implemented in the C++ double type. If we somehow relax
our stopping criterion the inaccuracies will propagate to the other roots that will drift further and
further away from the real roots. Lastly, when a root is found we need to divide the root up in the
Polynomial and repeat the search for the new reduced polynomial. When making a synthetic
division you have a choice between what is known as forward deflation, backward deflation, or
composite deflation. The choice can have an impact on the accuracy of the roots.

The mulƟple roots issue
Consider the polynomial:

 P(x)=(x-1)(x-2)(x-3)(x-4)=x4-10x3+35x2-50x+24

As you can see below the roots are well separated.

Fast Polynomial Root Finder, Part One

4 5 October 2023

Figure 1. Well separated roots

Using a starting point of 0.5 the Newton iteration progresses as follows toward the first root:

x P(x)
IniƟal guess 0.5

1 0.798295454545455 6.6E+00
2 0.950817599863883 1.7E+00
3 0.996063283034122 3.2E-01
4 0.999971872651986 2.4E-02
5 0.999999998549667 1.7E-04
6 0.999999999999999 8.7E-09
7 1.000000000000000 7.1E-15

As we can see we get the first root x=1 after only 7 iterations. We also notice that after the
second iteration x2=0.95, we roughly double the number of correct digits towards the first root
for each iteration. An iteration method that doubles the number of correct digits for each iteration
is said to have a convergence order of 2.

Now let’s change the polynomial and introduce a double root at x=1:

P(x)=(x-1)2 (x-3)(x-4)=x4-9x3+27x2-31x+12

With the same starting point x=0.5, we get a much slower convergence and after 27 iterations we
get no more improvement towards the first root of x=1 and the results are only accurate to
approximately the first 8 digits.

x P(x)
IniƟal guess 0.5

1 0.713414634146341 2.2E+00
2 0.842942878437970 6.2E-01
3 0.916937117337937 1.7E-01

Fast Polynomial Root Finder, Part One

5 5 October 2023

…
10 0.999306565270595 1.2E-05
…
20 0.999999322514237 1.1E-11
… 0.999999661405383 2.8E-12
27 0.999999996306426 0.0E+00

What exactly happens here?

if P(x)=(x-1)2 (x-3)(x-4), then P'(x)=(x-1)(4x2-23x+31)

The root x=1 is both a root for the original Polynomial P(x) but also of P’(x). see the image
below.

Figure 2. A double root at x=1

In a Newton iteration, when both P(x) and P’(x) go towards 0 introducing round-off errors in the
accuracy of calculating the next xn+1 in a Newton iteration. For illustration, we repeat the
iteration step but include the P’(x). Furthermore, we introduce the convergence rate q as well.

x P(x) P'(x) q
IniƟal guess 0.5

1 0.713414634146341 2.2E+00 -1.0E+01

2 0.842942878437970 6.2E-01 -4.8E+00 1.3
3 0.916937117337937 1.7E-01 -2.3E+00 1.2
…
10 0.999306565270595 1.2E-05 -1.7E-02 1.1
…
20 0.999999322514237 1.1E-11 -1.6E-05 1.0
…
25 0.999999976999021 1.1E-14 -5.2E-07 1.0
26 0.999999996306426 5.3E-15 -2.8E-07 -
27 0.999999996306426 0.0E+00 -4.4E-08 -

Fast Polynomial Root Finder, Part One

6 5 October 2023

We notice a couple of things; the convergence rate q is much slower than in our first example; ~2
versus ~1.1. Furthermore, we can see for each iteration that the root convergence with a linear
factor of 2 instead of what we should expect from the quadratic factor 2 from our first example.
For higher orders multiplicity of roots, gets even worse. E.g.

if P(x)=(x-1)3 (x-4), then P'(x)=(x-1)2 (4x-13)

After 31 iterations we get x=0.999998662746209 which is only accurate to approximately the
first 5 digits.

x P(x) P'(x) q
IniƟal guess 0.5

1 0.659090909090909 4.4E-01 -2.8E+00

2 0.768989234449761 1.3E-01 -1.2E+00 1.2
…
29 0.999995827925540 4.4E-16 -2.9E-10 1.0
30 0.999998662746209 4.4E-16 -1.6E-10 -
31 0.999998662746209 0.0E+00 -1.6E-11 -

Around the tripe multiple roots at x=1 then P’(x) is very flat ~ 0 in a fairly wide radius around
the multiple roots.

Figure 3. A triple root at x=1

What to do about mulƟple roots with the Newton iteraƟon?
To overcome this reduction of the Newton step size we need to multiply it with a factor m so we
instead used the modified Newton iteration.

𝑥௡ାଵ = 𝑥௡ − 𝑚
௉(௫೙)

௉ᇱ(௫೙)

Fast Polynomial Root Finder, Part One

7 5 October 2023

Where m is the multiplicity of the roots. This is all well-known stuff. The challenge is how to
find m in real life.

A suitable starting point for root ϐinders
To make the iterative methods faster to converge to Polynomial roots it is important that we
somehow start at a suitable point that is in the neighborhood of a root. Luckily, many people
have studied this field and there are an impressive 45+ methods for creating a priori bound of the
roots as outlined by J.McNamee, Numerical Methods for Roots of Polynomials [8]. Most a
priori bounds are for finding the radius of a circle where all the roots are located. A few also deal
with the radius of the circle where the root with the smallest magnitude is located. This is very
useful for methods that find one root at a time and where the strategy is to find the roots with
increasing order of magnitude.

Priori for the root with the smallest magnitude.

Most root-finding implementations that I have seen do not pay too much attention to the starting
point. E.g. [6] Grant-Hitchins uses a fixed starting point of (0.001+i0.1). Instead of a fixed
starting point, I would advocate for the starting point as implemented by Madsen [2]. Were we
find the starting point z0 where the root with the smallest magnitude lies outside this circle:

𝑧଴ =
ଵ

ଶ
𝑚𝑖𝑛଴ழ௞ ටቚ

௔బ

௔ೖ
ቚ 𝑒௜ఏೖ

, 𝜃 = arg (−
௉(଴)

௉ᇱ(଴)
)

The smallest root is located outside the circle with a radius |z0| in the complex plane.

Consider the Polynomial:

P(x)=(x-1)(x+2)(x-3)(x-4)= x4+2x3-13x2-14x+24

The above formula yields a starting point z0=0.68 which is close to the nearest root of x=1.

Now consider the Polynomial:

P(x)= (x-1)(x+1000)(x-2000)(x+3000)= x4+1999x3-5002E3x2-5995E6x+6E9

The above formula yields a z0= 0.5 (nearest root x=1)

After the first root x=1 is found the deflated polynomial is then P(x)= (x+1000)(x-
2000)(x+3000)=x3+2E3x2-5E6x-6E9 and the above formula yield a new Starting point for a new
search for the deflated Polynomial is z0=600 (nearest root x=1,000)

This algorithm computes a reasonable and suitable starting point for our root search.
 // Compute the next starting point based on the polynomial coefficients
 // A root will always be outside the circle from the origin and radius min
 auto startpoint = [&](const vector<complex<double>>& a)
 {

Fast Polynomial Root Finder, Part One

8 5 October 2023

 const size_t n = a.size() - 1;
 double a0 = log(abs(a.back()));
 double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n));

 for (size_t i = 1; i < n; i++)
 if (a[i] != complexzero)
 {
 double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i));
 if (tmp < min)
 min = tmp;
 }

 return min*0.5;
 };

Evaluation of the Polynomial at a complex point.
Most of the root-finding methods require us to evaluate a Polynomial at some point.

To evaluate a polynomial P(z) were:

P(z)=an zn+an-1zn-1,…,a1 z+a0

We use the Horner [4] method given by the recurrence:

bn=an
bk=bk-1z+ak, k=n-1,…,0
P(z)=b0

The last term of this recurrence b0 is then the value of P(z). Horner method has long been
recognized as the most efficient way to evaluate a Polynomial at a given point. The algorithm
works for coefficients to be either real or complex numbers.
 // Evaluate a polynomial with complex coefficients a[] at a complex point z and
 // return the result
 // This is the Horner's methods
 auto horner = [](const vector<complex<double>>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 complex<double> fval=a.front();
 eval e;

 for (size_t i = 1; i <= n; i++)
 fval = fval * z + a[i];

 e = { z, fval,abs(fval) };
 return e;
 };

A suitable stopping criterion for a root.
In [8] they go over many different techniques to compute a suitable stopping criterion. See also
[1]. Many roots finders can use the method used by Adams [5] or Hitching [6] to find a suitable
stopping criterion for polynomials with either real or complex coefficients.

Fast Polynomial Root Finder, Part One

9 5 October 2023

When doing the iterative method, you will at some point need to consider what stopping criteria
you want to apply for your root finders. Since most iterative root finders use the evaluation of the
polynomial to progress it is only natural to continue our search until the evaluation of P(z) is
close enough to 0 to accept the root at that point.

Error in arithmeƟc operaƟons
J.H.Wilkinson in [7] has shown that the errors in performing algebraic operations are bound by:

ε<½β1-t, β is the base, and t is the precision (assuming round to nearest)

Notice ½β1-t= β-t

For the Intel microprocessor series and the IEE754 standard for floating point operations β= 2
and t=53 for 64bit floating point arithmetic or 2-53

A simple upper bound
A simple upper bound can then be found using the above information for a polynomial with
degree n.

 Polynomials
Number of operations: Real coefficient Complex coefficients
Real point |ao|·2n·2-53 |ao|·4n·2-53
Complex point |ao|·4n·2-53 |ao|·6n·2-53

A beƩer upper bound
In this category, we have among others Adams [5] and Grant & Hitchins [6] stopping criteria for
polynomials.
Polynomial root finders usually can handle polynomials with both real and complex coefficients
evaluated at a real or complex number. Since Adams' stopping criterion is for Polynomials with
real coefficients, we will use Grant & Hitchins bound which is similar but for Polynomials with
complex coefficients.

Grant & Hitchins stopping criteria for polynomials with complex coefficients
Polynomial with complex coefficients zn evaluated at a complex point z, using Horner’s method.
Grant and Hitchins [6] derive an upper error bound for the errors in evaluating the polynomial as
follows using the recurrence where z=x+iy and the complex coefficients are represented as
an+ibn:

cn=an, dn=bn, gn=1, hn=1;
ck=xck+1-ydk+1+ak, k=n-1,...,0
dk=yck+1+xdk+1+bk

gk=|x|(gk+1+|ck+1|)+|y|(hk+1+|dk+1|)+|ak|+2|ck|
hk=|y|(gk+1+|ck+1|)+|x|(hk+1+|dk+1|)+|bk|+2|dk|

Fast Polynomial Root Finder, Part One

10 5 October 2023

Now the error is (g0+ih0)ɛ, where ɛ= ½ β1-t. Now since the recurrence in itself introduces error
[6] safeguard the calculation by adding the upper bound for the rounding errors in the recurrence,
so we have the bound for evaluating a complex polynomial at a complex point:

 e=(g0+ih0)ε(1+ε)5n, where ε=½β1-t

There exist other methods that are also useful to consider, see [1]
 // Calculate an upper bound for the rounding errors performed in a
 // polynomial with complex coefficient a[] at a complex point z.
 // (Grant & Hitchins test)
 auto upperbound = [](const vector<complex<double>>& a, complex<double> z)
 {
 const size_t n = a.size() - 1;
 double nc, oc, nd, od, ng, og, nh, oh, t, u, v, w, e;
 double tol = 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 1);

 oc = a[0].real();
 od = a[0].imag();
 og = oh = 1.0;
 t = fabs(z.real());
 u = fabs(z.imag());
 for (size_t i = 1; i <= n; i++)
 {
 nc = z.real() * oc - z.imag() * od + a[i].real();
 nd = z.imag() * oc + z.real() * od + a[i].imag();
 v = og + fabs(oc);
 w = oh + fabs(od);
 ng = t * v + u * w + fabs(a[i].real()) + 2.0 * fabs(nc);
 nh = u * v + t * w + fabs(a[i].imag()) + 2.0 * fabs(nd);
 og = ng;
 oh = nh;
 oc = nc;
 od = nd;
 }
 e = abs(complex<double>(ng, nh)) * pow(1 + tol, 5 * n) * tol;
 return e;
 };

Polynomial Deϐlation strategy
After we have found a root, we need to make a synthetic division of that root up in the current
Polynomial to reduce the polynomial degree and prepare to find the next root. The question then
arises do you use Forward or Backward Deflation?
Wilkinson [7] has shown that to have a stable deflation process you should choose forward
deflation if you find the roots of the polynomial in increasing magnitude and always deflate the
polynomial with the lowest magnitude root first and of course, the opposite backward deflation
when finding the roots with decreasing magnitude.
To do forward deflation we try to solve the equations starting with the highest coefficients an:

anzn+an-1zn-1+⋯+a1z+a0=(bn-1zn-1+bn-2zn-2+⋯+b1z+b0)(z-R)

And R is the root.
Now solve it for b’s you get the recurrence:

Fast Polynomial Root Finder, Part One

11 5 October 2023

bn-1=an
bk=ak+1+R∙bk+1, k=n-2,…,0

This simple algorithm works well for polynomials with real coefficients and real roots or
complex coefficients with complex roots using the same recurrence just using complex
arithmetic instead.

// Deflate polynomial and compute new coefficients in coeff
 z = 0;
 for (int j = 0; j < n; j++)
 z = coeff[j] = z * pz.z + coeff[j];
 coeff.resize(n);

The Implementation of K. Madsen Newton Algorithm
The implementation of this root finder follows the method as first described by K. Madsen in [2].
Which was an AlgolW implementation. This implementation below is a modified version
translated into C++ and uses a more modern structure including the C++ STL library. The first
step is to lay out the process.
Of course, the most interesting part is the section “Start the Newton iteration” Madsen [2]
provides a very fast and efficient implementation that not only finds the roots in surprisingly few
iterations but also handles the usual issues with the Newton method. I do not plan to repeat what
is so excellent as described in [2] but just highlight some interesting areas of his Newton
implementation.

1) First, we eliminate simple roots (roots equal to zero)
2) Then we find a suitable starting point to start our Newton Iteration, this also includes

termination criteria based on an acceptable value of P(x) where we will stop the current
iteration.

3) Start the Newton iteration
a. The first step is to find the dzn=P(zn)/P’(zn) and of course, decide what should happen

if P’(zn) is zero. When this condition arises, it is most often due to a local minimum
and the best course of action is to alter the direction with a factor
dzn=dzn(0.6+i0.8)m. This is equivalent to rotating the direction with an odd degree of
53 degrees and multiplying the direction with the factor m. A suitable value for m =5
is reasonable when this happens.

b. Furthermore, it is easy to realize that if P’(zn)~0. You could get some unreasonable
step size of dzn and therefore introduced a limiting factor that reduced the current step
size if abs(dzn)>5·abs(dzn-1) than the previous iteration's step size. Again, you alter
the direction with dzn=dzn(0.6+i0.8)5(abs(dzn-1)/abs(dzn)).

c. These two modifications (a and b) make his method very resilient and make it always
converge to a root.

d. The next issue is to handle the issue with multiplicity > 1 which will slow the 2nd
order convergence rate down to a linear convergence rate. After a suitable dzn is

found and a new 𝑧௡ାଵ = 𝑧௡ −
௉(௭೙)

௉ᇲ(௭೙)
 we then look to see if P(zn+1)>P(zn): If so we

look at a revised zn+1=zn-0.5dzn and if P(zn+1)≥P(zn) then he used the original zn+1 as
the new starting point for the next iteration. If not then we accept zn+1 as a better

Fast Polynomial Root Finder, Part One

12 5 October 2023

choice and continue looking at a newly revised zn+1=zn-0.25dzn. If on the other hand
the new P(zn+1)≥P(zn) we used the previous zn+1 as a new starting point for the next
iterations. If not then we assume we are nearing a new saddle point and the direction
is altered with dzn=dzn(0.6+i0.8) and we use 𝑧௡ାଵ = 𝑧௡ − 𝑑𝑧௡ as the new starting
point for the next iteration.
if on the other hand 𝑃(𝑧௡ାଵ) ≤ 𝑃(𝑧௡): Then we are looking in the right direction and
we then continue stepping in that direction using zn+1=zn-mdzn, m=2,..,n as long as
𝑃(𝑧௡ାଵ) ≤ 𝑃(𝑧௡) and use the best m for the next iterations. The benefit of this
process is that if there is a root with the multiplicity of m then m will also be the best
choice for the stepping size and this will maintain the 2nd-order convergence rate even
for multiple roots.

4) Processes a-d continue until the stopping criteria are reached where after the root zn is
accepted and deflated up in the Polynomial. A new search for a root using the deflated
Polynomial is initiated.

In [2] they divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get
into the convergence circle where we are sure that the Newton method will converge towards a
root. When we get into that circle, we automatically switch to stage 2. In stage 2 we skip step d)

and just use an unmodified Newton step 𝑧௡ାଵ = 𝑧௡ −
௉(௭೙)

௉ᇲ(௭೙)
 until the stopping criteria have been

satisfied. In case we get outside the convergence circle, we switch back to stage 1 and continue
the iteration.
In [2] they use the following criteria to switch to stage 2 based on the theorem 7.1 from

Ostrowski [3] that states if K is a circle with center 𝑤 −
௉(௪)

௉ᇱ(௪)
 And radius |

௉(௪)

௉ᇱ(௪)
|

Then we have guarantee convergence if the following two conditions are satisfied:

 𝑝(𝑤)𝑝ᇱ(𝑤) ≠ 0 𝑎𝑛𝑑

2|
𝑝(𝑤)

𝑝′(𝑤)
| ∙ max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≤ |𝑝′(𝑤)|

The Newton iterations with initial value w will lead to a convergence of zero within the circle K.
To simplify the calculation we make 2 substitutes, since max

௭ఌ௄
|𝑝ᇱᇱ(𝑧)| ≈ |𝑝′′(𝑤)| and instead of

p”(w) we replace it with a difference approximation 𝑝′′(𝑤) ≈
௣ᇲ(௭ೖషభ)ି௣ᇱ(௪)

௭ೖషభି௪

Now we have everything we need to determine when to switch to stage 2.

The C++ code
The C++ code below finds the Polynomial roots with Polynomial with complex coefficients. The
same algorithm can be used if the Polynomial coefficients are real. See [1] for details.

/*

 *
 * Copyright (c) 2023
 * Henrik Vestermark

Fast Polynomial Root Finder, Part One

13 5 October 2023

 * Denmark, USA
 *
 * All Rights Reserved
 *
 * This source file is subject to the terms and conditions of
 * Henrik Vestermark Software License Agreement which restricts the manner
 * in which it may be used.
 *

*/

/*

 *
 * Module name : Newton.cpp
 * Module ID Nbr :
 * Description : Solve n degree polynomial using Newton's (Madsen) method
 * --
 * Change Record :
 *
 * Version Author/Date Description of changes
 * ------- ------------- ----------------------
 * 01.01 HVE/24Sep2023 Initial release
 *
 * End of Change Record
 * --
*/

// define version string
static char _VNEWTON_[] = "@(#)Newton.cpp 01.01 -- Copyright (C) Henrik Vestermark";

#include <algorithm>
#include <vector>
#include <complex>
#include <iostream>
#include <functional>

using namespace std;
constexpr int MAX_ITER = 50;

// Find all polynomial zeros using a modified Newton method
// 1) Eliminate all simple roots (roots equal to zero)
// 2) Find a suitable starting point
// 3) Find a root using Newton
// 4) Divide the root up in the polynomial reducing its order with one
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the
remaining one or two roots are found by the direct formula
// Notice:
// The coefficients for p(x) is stored in descending order. coefficients[0] is
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),..., coefficients[n-1] is a(1)x,
coefficients[n] is a(0)
//
static vector<complex<double>> PolynomialRoots(const vector<complex<double>>&
coefficients)
{
 struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; };
 const complex<double> complexzero(0.0); // Complex zero (0+i0)
 size_t n; // Size of Polynomial p(x)
 eval pz; // P(z)
 eval pzprev; // P(zprev)
 eval p1z; // P'(z)

Fast Polynomial Root Finder, Part One

14 5 October 2023

 eval p1zprev; // P'(zprev)
 complex<double> z; // Use as temporary variable
 complex<double> dz; // The current stepsize dz
 int itercnt; // Hold the number of iterations per root
 vector<complex<double>> roots; // Holds the roots of the Polynomial
 vector<complex<double>> coeff(coefficients.size()); // Holds the current
coefficients of P(z)

 copy(coefficients.begin(), coefficients.end(), coeff.begin());
 // Step 1 eliminate all simple roots
 for (n = coeff.size() - 1; n > 0 && coeff.back() == complexzero; --n)
 roots.push_back(complexzero); // Store zero as the root

 // Compute the next starting point based on the polynomial coefficients
 // A root will always be outside the circle from the origin and radius min
 auto startpoint = [&](const vector<complex<double>>& a)
 {
 const size_t n = a.size() - 1;
 double a0 = log(abs(a.back()));
 double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n));

 for (size_t i = 1; i < n; i++)
 if (a[i] != complexzero)
 {
 double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i));
 if (tmp < min)
 min = tmp;
 }

 return min*0.5;
 };

 // Evaluate a polynomial with complex coefficients a[] at a complex point z and
 // return the result
 // This is the Horner's methods
 auto horner = [](const vector<complex<double>>& a, const complex<double> z)
 {
 const size_t n = a.size() - 1;
 complex<double> fval=a.front();
 eval e;

 for (size_t i = 1; i <= n; i++)
 fval = fval * z + a[i];

 e = { z, fval,abs(fval) };
 return e;
 };

 // Calculate an upper bound for the rounding errors performed in a
 // polynomial with complex coefficient a[] at a complex point z.
 // (Grant & Hitchins test)
 auto upperbound = [](const vector<complex<double>>& a, complex<double> z)
 {
 const size_t n = a.size() - 1;
 double nc, oc, nd, od, ng, og, nh, oh, t, u, v, w, e;
 double tol = 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 1);

 oc = a[0].real();
 od = a[0].imag();
 og = oh = 1.0;
 t = fabs(z.real());

Fast Polynomial Root Finder, Part One

15 5 October 2023

 u = fabs(z.imag());
 for (size_t i = 1; i <= n; i++)
 {
 nc = z.real() * oc - z.imag() * od + a[i].real();
 nd = z.imag() * oc + z.real() * od + a[i].imag();
 v = og + fabs(oc);
 w = oh + fabs(od);
 ng = t * v + u * w + fabs(a[i].real()) + 2.0 * fabs(nc);
 nh = u * v + t * w + fabs(a[i].imag()) + 2.0 * fabs(nd);
 og = ng;
 oh = nh;
 oc = nc;
 od = nd;
 }
 e = abs(complex<double>(ng, nh)) * pow(1 + tol, 5 * n) * tol;
 return e;
 };

 // Do Newton iteration for polynomial order higher than 2
 for (; n > 2; --n)
 {
 const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times
larger than the previous step size
 const complex<double> rotation = complex<double>(0.6, 0.8); // Rotation amount
 double r; // Current radius
 double rprev; // Previous radius
 double eps; // The iteration termination value
 bool stage1 = true; // By default it start the iteration in stage1
 int steps = 1; // Multisteps if > 1
 vector<complex<double>> coeffprime;

 // Calculate coefficients of p'(x)
 for (int i = 0; i < n; i++)
 coeffprime.push_back(coeff[i] * complex<double>(double(n - i), 0.0));

 // Step 2 find a suitable starting point z
 rprev = startpoint(coeff); // Computed startpoint
 z = coeff[n - 1] == complexzero ? complex<double>(1.0) : -coeff[n] / coeff[n -
1];
 z *= complex<double>(rprev) / abs(z);

 // Setup the iteration
 // Current P(z)
 pz = horner(coeff, z);

 // pzprev which is the previous z or P(0)
 pzprev.z = complex<double>(0);
 pzprev.pz = coeff[n];
 pzprev.apz = abs(pzprev.pz);

 // p1zprev P'(0) is the P'(0)
 p1zprev.z = pzprev.z;
 p1zprev.pz = coeff[n - 1]; // P'(0)
 p1zprev.apz = abs(p1zprev.pz);

 // Set previous dz and calculate the radius of operations.
 dz = pz.z; // dz=z-zprev=z since zprev==0
 r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size
allowed
 // Preliminary eps computed at point P(0) by a crude estimation
 eps = 6 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG);

Fast Polynomial Root Finder, Part One

16 5 October 2023

 // Start iteration and stop if z doesnt change or apz <= eps
 // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a
root
 for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER;
itercnt++)
 {
 // Calculate current P'(z)
 p1z = horner(coeffprime, pz.z);
 if (p1z.apz == 0.0) // P'(z)==0 then rotate and try again
 dz *= rotation * complex<double>(Max_stepsize); // Multiply with 5 to
get away from saddlepoint
 else
 {
 dz = pz.pz / p1z.pz; // next dz
 // Check the Magnitude of Newton's step
 r = abs(dz);
 if (r > rprev) // Large than 5 times the previous step size
 { // then rotate and adjust step size to prevent wild step size near
P'(z) close to zero
 dz *= rotation * complex<double>(rprev/r);
 r = abs(dz);
 }
 rprev = r * Max_stepsize; // Save 5 times the current step size for the
next iteration check of reasonable step size
 // Calculate if stage1 is true or false. Stage1 is false if the Newton
converge otherwise true
 z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z);
 stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4.0) || (steps != 1);
 }
 // Step accepted. Save pz in pzprev
 pzprev = pz;

 z = pzprev.z - dz; // Next z
 pz = horner(coeff, z); //ff = pz.apz;
 steps = 1;
 if (stage1)
 { // Try multiple steps or shorten steps depending if P(z) is an
improvement or not P(z)<P(zprev)
 bool div2;
 complex<double> zn;
 eval npz;

 zn = pz.z;
 for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps)
 {
 if (div2 == true)
 { // Shorten steps
 dz *= complex<double>(0.5);
 zn = pzprev.z - dz;
 }
 else
 zn -= dz; // try another step in the same direction

 // Evaluate new try step
 npz = horner(coeff, zn);
 if (npz.apz >= pz.apz)
 break; // Break if no improvement

 // Improved => accept step and try another round of step
 pz = npz;

Fast Polynomial Root Finder, Part One

17 5 October 2023

 if (div2 == true && steps == 2)
 { // To many shorten steps => try another direction and break
 dz *= rotation;
 z = pzprev.z - dz;
 pz = horner(coeff, z);
 break;
 }
 }
 }
 else
 { // calculate the upper bound of error using Grant & Hitchins's test for
complex coefficients
 // Now that we are within the convergence circle.
 eps = upperbound(coeff, pz.z);
 }
 }

 // Check if there is a very small residue in the imaginary part by trying
 // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a
better root than z.
 z = complex<double>(pz.z.real());
 pzprev = horner(coeff, z);
 if (pzprev.apz <= pz.apz)
 pz = pzprev;

 // Save the root
 roots.push_back(pz.z);

 // Deflate polynomial and compute new coefficients in coeff
 z = complex<double>(0);
 for (int j = 0; j < n; j++)
 z = coeff[j] = z * pz.z + coeff[j];
 coeff.resize(n);
 /*
 std::transform(coeff.begin(), coeff.end() - 1, coeff.begin() + 1, coeff.begin(),
 [pz](const complex<double>& coeff, const complex<double>& next_coeff) {
 return coeff * pz.z + next_coeff;
 });
 coeff.resize(n);
 */
 } // End Iteration

 // Solve any remaining linear or quadratic polynomial
 // For Polynomial with complex coefficients a[],
 // The complex solutions are stored in the back of the roots
 auto quadratic = [&](const std::vector<complex<double>>& a)
 {
 const size_t n = a.size() - 1;
 complex<double> v;

 // Notice a[0] is !=0 since all roots=zero has been captured previously
 if (n == 1)
 roots.push_back(-a[1]/a[0]);
 else
 {
 if (a[1] == complexzero)
 {
 v = sqrt(-a[2] / a[0]);
 roots.push_back(v);
 roots.push_back(-v);

Fast Polynomial Root Finder, Part One

18 5 October 2023

 }
 else
 {
 v = sqrt(complex<double>(1.0)-
complex<double>(4.0)*a[0]*a[2]/(a[1]*a[1]));
 if (v.real() < 0)
 v = (complex<double>(-1.0) - v) * a[1] / (complex<double>(2.0) *
a[0]);
 else
 v = (complex<double>(-1.0) + v) * a[1] / (complex<double>(2.0) *
a[0]);
 roots.push_back(v);
 roots.push_back(a[2] / (a[0] * v));
 }
 }
 return;
 };

 if (n > 0)
 quadratic(coeff);

 return roots;
}

Example 1.
Here is an example of how the above source code is working.

For the complex Polynomial:
+1x^3+(-13-i1)x^2+(44+i12)x+(-32-i32)
Start Newton IteraƟon for Polynomial=+1x^3+(-13-i1)x^2+(44+i12)x+(-32-i32)
 Stage 1=>Stop CondiƟon. |f(z)|<3.01e-14
 Start : z[1]=(0.4+i0.2) dz=(4.31e-1+i2.46e-1) |f(z)|=2.6e+1
IteraƟon: 1
 Newton Step: z[1]=(1+i0.7) dz=(-5.91e-1-i4.63e-1) |f(z)|=6.3e+0
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=(2+i1) dz=(-5.91e-1-i4.63e-1) |f(z)|=1.1e+1
 : No improvement=>Discard last try step
IteraƟon: 2
 Newton Step: z[2]=(1.0+i1.0) dz=(-1.83e-2-i2.99e-1) |f(z)|=9.0e-1
 In Stage 2=>New Stop CondiƟon: |f(z)|<4.79e-14
IteraƟon: 3
 Newton Step: z[2]=(1.0+i1.0) dz=(4.07e-2+i8.94e-3) |f(z)|=1.8e-2
 In Stage 2=>New Stop CondiƟon: |f(z)|<4.65e-14
IteraƟon: 4
 Newton Step: z[4]=(1.000+i1.000) dz=(-6.04e-4-i5.04e-4) |f(z)|=6.3e-6
 In Stage 2=>New Stop CondiƟon: |f(z)|<4.65e-14
IteraƟon: 5
 Newton Step: z[8]=(1.0000000+i1.0000000) dz=(2.39e-8-i2.81e-7) |f(z)|=8.2e-13
 In Stage 2=>New Stop CondiƟon: |f(z)|<4.65e-14
IteraƟon: 6
 Newton Step: z[14]=(1.0000000000000+i1.0000000000000) dz=(3.32e-14+i1.53e-14)
|f(z)|=7.9e-15

Fast Polynomial Root Finder, Part One

19 5 October 2023

 In Stage 2=>New Stop CondiƟon: |f(z)|<4.65e-14 Stop Criteria saƟsfied aŌer 6 IteraƟons Final
Newton z[14]=(1.0000000000000+i1.0000000000000) dz=(3.32e-14+i1.53e-14) |f(z)|=7.9e-15
AlteraƟon=0% Stage 1=17% Stage 2=83%
 Deflate the complex root z=(0.9999999999999999+i0.9999999999999998)
Solve Polynomial=+(1)x^2+(-12-i2.220446049250313e-16)x+(32+i3.552713678800501e-15) directly
Using the Newton Method, the SoluƟons are:
X1=(0.9999999999999999+i0.9999999999999998)
X2=(8.000000000000002-i4.440892098500625e-16)
X3=(3.999999999999999+i6.661338147750937e-16)

Example 2.
The same example just with a double root at z=(1+i). We see that each step is a double step in
line with a multiplicity of 2 for the first root.

For the complex Polynomial:
+1x^3+(-10-i2)x^2+(16+i18)x+(-i16)
Start Newton IteraƟon for Polynomial=+1x^3+(-10-i2)x^2+(16+i18)x+(-i16)
 Stage 1=>Stop CondiƟon. |f(z)|<1.07e-14
 Start : z[1]=(0.2+i0.2) dz=(2.48e-1+i2.21e-1) |f(z)|=9.1e+0
IteraƟon: 1
 Newton Step: z[1]=(0.6+i0.6) dz=(-3.76e-1-i3.54e-1) |f(z)|=2.4e+0
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[1]=(1+i0.9) dz=(-3.76e-1-i3.54e-1) |f(z)|=3.7e-2
 : Improved=>ConƟnue stepping
 Try Step: z[1]=(1+i1) dz=(-3.76e-1-i3.54e-1) |f(z)|=1.5e+0
 : No improvement=>Discard last try step
IteraƟon: 2
 Newton Step: z[2]=(1.0+i0.96) dz=(3.68e-4-i3.61e-2) |f(z)|=9.2e-3
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[2]=(1.0+i1.0) dz=(3.68e-4-i3.61e-2) |f(z)|=9.6e-7
 : Improved=>ConƟnue stepping
 Try Step: z[2]=(1.0+i1.0) dz=(3.68e-4-i3.61e-2) |f(z)|=9.2e-3
 : No improvement=>Discard last try step
IteraƟon: 3
 Newton Step: z[5]=(1.0002+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=2.4e-7
 FuncƟon value decrease=>try mulƟple steps in that direcƟon
 Try Step: z[5]=(1.0000+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=8.9e-16
 : Improved=>ConƟnue stepping
 Try Step: z[5]=(0.99982+i0.99997) dz=(1.82e-4+i2.89e-5) |f(z)|=2.4e-7
 : No improvement=>Discard last try step
Stop Criteria saƟsfied aŌer 3 IteraƟons
Final Newton z[5]=(1.0000+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=8.9e-16
AlteraƟon=0% Stage 1=100% Stage 2=0%
 Deflate the complex root z=(0.9999999913789768+i0.9999999957681246)
Solve Polynomial=+(1)x^2+(-9.000000008621024-
i1.0000000042318753)x+(8.000000068968186+i8.000000033855004) directly
Using the Newton Method, the SoluƟons are:

Fast Polynomial Root Finder, Part One

20 5 October 2023

X1=(0.9999999913789768+i0.9999999957681246)
X2=(8.000000000000004-i2.6645352478243948e-15)
X3=(1.0000000086210223+i1.0000000042318753)

Conclusion
Presented is a modified Newton method originally based on [2] making the Newton method
more efficient and stable for finding polynomial roots with complex coefficients. The same
method can easily be applied to Polynomials with real coefficients.
This was part one, part two handled the case where we only found roots in a polynomial with
real coefficients. However, the root can still be complex. Part three shows the adjustment needed
to implement a higher-order method e.g. Halley. Part 4 how easy it is to fit another method like
Laguerre’s into the same framework.
A web-based Polynomial solver can be found on Polynomial roots that demonstrate many of
these methods in action.

Reference

1. H. Vestermark. A practical implementation of Polynomial root finders. Practical
implementation of Polynomial root finders vs 7.docx (www.hvks.com)

2. Madsen. A root-finding algorithm based on Newton Method, Bit 13 (1973) 71-75.
3. A. Ostrowski, Solution of equations and systems of equations, Academic Press, 1966.
4. Wikipedia Horner’s Method: https://en.wikipedia.org/wiki/Horner%27s_method
5. Adams, D A stopping criterion for polynomial root finding.

Communication of the ACM Volume 10/Number 10/ October 1967 Page 655-658
6. Grant, J. A. & Hitchins, G D. Two algorithms for the solution of polynomial equations to

limiting machine precision. The Computer Journal Volume 18 Number 3, pages 258-264
7. Wilkinson, J H, Rounding errors in Algebraic Processes, Prentice-Hall Inc, Englewood

Cliffs, NJ 1963
8. McNamee, J.M., Numerical Methods for Roots of Polynomials, Part I & II, Elsevier,

Kidlington, Oxford 2009
9. H. Vestermark, “A Modified Newton and higher orders Iteration for multiple roots.”,

www.hvks.com/Numerical/papers.html
10. M.A. Jenkins & J.F. Traub, ”A three-stage Algorithm for Real Polynomials using

Quadratic iteration”, SIAM J Numerical Analysis, Vol. 7, No.4, December 1970.

