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Abstract:  
In general Newton’s method for finding roots of polynomials is an effective and easy algorithm 
to both implement and use. However certain weakness is exposed when trying to find roots in a 
polynomial with multiple roots. This paper highlights the weakness and devises a modification to 
the general Newton algorithm that can effectively cope with the multiple roots issue and deal 
with the usual pitfalls in using the Newton method to find polynomial roots. This paper is part of 
a multi-series of papers on how to use the same framework to implement different root finder 
methods. 
 

Introduction: 
Newton’s method for finding the roots of polynomials is one of the most popular and simple 
methods. Newton’s methods use the following algorithm to progressively find values closer and 
closer to the root. 
 

𝑥 = 𝑥 −
( )

( )
          

By finding one root at a time. There exist other methods that progressively iterate towards all 
roots simultaneously. These are methods like Aberth-Ehrlich or Durand-Kerner. However, they 
have other issues that make them less desirable to implement. Of course, there are many other 
methods to consider. Among them are Halley, Householder 3rd order, Ostrowski, Laguerre, 
Graeffe, Jenkins-Traub(most likely the most famous), Eigenvalue method, and many others. All 
of these methods are available in a fast and stable version. Readers can look at [1] that go 
through 20+ different method and their implementation. For now, I will just go over the practical 
implementation for a robust and stable root finder using Newton’s method. We will furthermore 
require that the Polynomial have complex coefficients. The algorithm is the same regardless of 
whether the Polynomial has real (part two) or complex coefficients (this paper). 
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The task at hand 
 
Finding the Polynomial roots using Newton's method is usually straightforward to implement: 
 

𝑥 = 𝑥 −
( )

( )
         

 
Typically, you go through these steps. 
 

1) Eliminate Simple roots where the roots are zero. 
2) Setup the Newton iteration 
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a. Find a suitable start guess 
b. Evaluate both P(xn) and P’(xn) using Horner method 
c. Find the step size P(xn)/P’(xn) 
d. Compute the next xn+1 
e. Repeat b-d until the stopping criterion is met 
f. Divide the newly founded root up in P(x) to compute the new reduced Pnew(x) 
g. Repeat a-f until we are left with a first or second-degree Polynomial  

3) Solve the first or second-degree polynomial directly 
 
You will go more or less through the same steps for many of the other root-finding methods. 
 

The issue with Newton’s method: 
In itself, the Newton method is not necessarily stable but requires extra code to handle the 
classical pitfalls when implemented as a robust, fast, and stable solution. By just looking at the 
above formula (2) it is clear we will have an issue when P’(x) is zero or close to zero. But that is 
not the only issue you will encounter. Sometimes if we hit a local minimum, you can get step 
length P(x)/P’(x) that throws the search far away from any roots.  It also matters where to start 
the search for the root since the above algorithm will only converge to a root when you are 
somehow close to the roots. The Newton method has a convergence order of two meaning that 
the number of correct direct doubles for each iteration. But when trying to find a solution that 
contains multiple roots e.g. (x-2)2(x-3)=0 the convergence rate drops to a linear rate requiring 
many more iterations to find the root.  
We would need to address the multiple root issues and ensure we maintain the convergence order 
of 2 in these situations as well. At some point, we need to figure out when to stop a search and be 
happy with the accuracy at the same time. Our goal is to take it to the limit of what the IEEE754 
floating point standard can handle as implemented in the C++ double type. If we somehow relax 
our stopping criterion the inaccuracies will propagate to the other roots that will drift further and 
further away from the real roots. Lastly, when a root is found we need to divide the root up in the 
Polynomial and repeat the search for the new reduced polynomial. When making a synthetic 
division you have a choice between what is known as forward deflation, backward deflation, or 
composite deflation. The choice can have an impact on the accuracy of the roots. 
 

The mul ple roots issue 
Consider the polynomial: 
 

 P(x)=(x-1)(x-2)(x-3)(x-4)=x4-10x3+35x2-50x+24 
  

As you can see below the roots are well separated. 
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Figure 1. Well separated roots 

 
Using a starting point of 0.5 the Newton iteration progresses as follows toward the first root: 
  

x P(x) 
Ini al guess 0.5 

 

1 0.798295454545455 6.6E+00 
2 0.950817599863883 1.7E+00 
3 0.996063283034122 3.2E-01 
4 0.999971872651986 2.4E-02 
5 0.999999998549667 1.7E-04 
6 0.999999999999999 8.7E-09 
7 1.000000000000000 7.1E-15 

 
As we can see we get the first root x=1 after only 7 iterations. We also notice that after the 
second iteration x2=0.95, we roughly double the number of correct digits towards the first root 
for each iteration. An iteration method that doubles the number of correct digits for each iteration 
is said to have a convergence order of 2. 
 
Now let’s change the polynomial and introduce a double root at x=1: 
 

P(x)=(x-1)2 (x-3)(x-4)=x4-9x3+27x2-31x+12  
 
With the same starting point x=0.5, we get a much slower convergence and after 27 iterations we 
get no more improvement towards the first root of x=1 and the results are only accurate to 
approximately the first 8 digits. 
  

x P(x) 
Ini al guess 0.5 

 

1 0.713414634146341 2.2E+00 
2 0.842942878437970 6.2E-01 
3 0.916937117337937 1.7E-01 
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…   
10 0.999306565270595 1.2E-05 
…   
20 0.999999322514237 1.1E-11 
… 0.999999661405383 2.8E-12 
27 0.999999996306426 0.0E+00 

 
What exactly happens here?  
 

if  P(x)=(x-1)2 (x-3)(x-4), then P'(x)=(x-1)(4x2-23x+31) 
 
The root x=1 is both a root for the original Polynomial P(x) but also of P’(x).  see the image 
below. 

 
Figure 2. A double root at x=1 

 
In a Newton iteration, when both P(x) and P’(x) go towards 0 introducing round-off errors in the 
accuracy of calculating the next xn+1 in a Newton iteration. For illustration, we repeat the 
iteration step but include the P’(x). Furthermore, we introduce the convergence rate q as well. 
  

x P(x) P'(x) q 
Ini al guess 0.5 

   

1 0.713414634146341 2.2E+00 -1.0E+01 
 

2 0.842942878437970 6.2E-01 -4.8E+00 1.3 
3 0.916937117337937 1.7E-01 -2.3E+00 1.2 
…     
10 0.999306565270595 1.2E-05 -1.7E-02 1.1 
…     
20 0.999999322514237 1.1E-11 -1.6E-05 1.0 
…     
25 0.999999976999021 1.1E-14 -5.2E-07 1.0 
26 0.999999996306426 5.3E-15 -2.8E-07 - 
27 0.999999996306426 0.0E+00 -4.4E-08 - 
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We notice a couple of things; the convergence rate q is much slower than in our first example; ~2 
versus ~1.1. Furthermore, we can see for each iteration that the root convergence with a linear 
factor of 2 instead of what we should expect from the quadratic factor 2 from our first example.  
For higher orders multiplicity of roots, gets even worse. E.g. 
 

if P(x)=(x-1)3 (x-4), then P'(x)=(x-1)2 (4x-13) 
 
After 31 iterations we get x=0.999998662746209 which is only accurate to approximately the 
first 5 digits. 
  

x P(x) P'(x) q 
Ini al guess 0.5 

   

1 0.659090909090909 4.4E-01 -2.8E+00 
 

2 0.768989234449761 1.3E-01 -1.2E+00 1.2 
…     
29 0.999995827925540 4.4E-16 -2.9E-10 1.0 
30 0.999998662746209 4.4E-16 -1.6E-10 - 
31 0.999998662746209 0.0E+00 -1.6E-11 - 

 
Around the tripe multiple roots at x=1 then P’(x) is very flat ~ 0 in a fairly wide radius around 
the multiple roots. 
 
 

 
Figure 3. A triple root at x=1 

 

What to do about mul ple roots with the Newton itera on? 
To overcome this reduction of the Newton step size we need to multiply it with a factor m so we 
instead used the modified Newton iteration. 
 

𝑥 = 𝑥 − 𝑚
( )

( )
          



Fast Polynomial Root Finder, Part One 

7    5 October 2023 
 

Where m is the multiplicity of the roots. This is all well-known stuff. The challenge is how to 
find m in real life. 
 

A suitable starting point for root inders 
To make the iterative methods faster to converge to Polynomial roots it is important that we 
somehow start at a suitable point that is in the neighborhood of a root. Luckily, many people 
have studied this field and there are an impressive 45+ methods for creating a priori bound of the 
roots as outlined by J.McNamee, Numerical Methods for Roots of Polynomials [8].  Most a 
priori bounds are for finding the radius of a circle where all the roots are located. A few also deal 
with the radius of the circle where the root with the smallest magnitude is located. This is very 
useful for methods that find one root at a time and where the strategy is to find the roots with 
increasing order of magnitude. 
 

Priori for the root with the smallest magnitude. 
 
Most root-finding implementations that I have seen do not pay too much attention to the starting 
point. E.g. [6] Grant-Hitchins uses a fixed starting point of (0.001+i0.1). Instead of a fixed 
starting point, I would advocate for the starting point as implemented by Madsen [2]. Were we 
find the starting point z0 where the root with the smallest magnitude lies outside this circle: 
 

𝑧 = 𝑚𝑖𝑛 𝑒 , 𝜃 = arg (−
( )

( )
)        

 
The smallest root is located outside the circle with a radius |z0| in the complex plane.   
 
Consider the Polynomial: 
 

P(x)=(x-1)(x+2)(x-3)(x-4)= x4+2x3-13x2-14x+24 
 
The above formula yields a starting point z0=0.68 which is close to the nearest root of x=1. 
 
Now consider the Polynomial: 
 

P(x)= (x-1)(x+1000)(x-2000)(x+3000)= x4+1999x3-5002E3x2-5995E6x+6E9 
 
The above formula yields a z0= 0.5 (nearest root x=1) 
 
After the first root x=1 is found the deflated polynomial is then P(x)= (x+1000)(x-
2000)(x+3000)=x3+2E3x2-5E6x-6E9 and the above formula yield a new Starting point for a new 
search for the deflated Polynomial is z0=600 (nearest root x=1,000) 
 
This algorithm computes a reasonable and suitable starting point for our root search. 
    // Compute the next starting point based on the polynomial coefficients 
    // A root will always be outside the circle from the origin and radius min 
    auto startpoint = [&](const vector<complex<double>>& a) 
    { 
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    const size_t n = a.size() - 1; 
    double a0 = log(abs(a.back())); 
    double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n)); 
 
    for (size_t i = 1; i < n; i++) 
        if (a[i] != complexzero) 
        { 
            double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i)); 
            if (tmp < min) 
                min = tmp; 
        } 
 
    return min*0.5; 
    }; 

Evaluation of the Polynomial at a complex point. 
Most of the root-finding methods require us to evaluate a Polynomial at some point. 
 
To evaluate a polynomial P(z) were: 

 
P(z)=an zn+an-1zn-1,…,a1 z+a0 

 
We use the Horner [4] method given by the recurrence: 
 

bn=an 
bk=bk-1z+ak,   k=n-1,…,0 
P(z)=b0      

 
The last term of this recurrence b0 is then the value of P(z). Horner method has long been 
recognized as the most efficient way to evaluate a Polynomial at a given point. The algorithm 
works for coefficients to be either real or complex numbers. 
    // Evaluate a polynomial with complex coefficients a[] at a complex point z and 
    // return the result  
    // This is the Horner's methods 
    auto horner = [](const vector<complex<double>>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> fval=a.front(); 
        eval e; 
 
        for (size_t i = 1; i <= n; i++) 
            fval = fval * z + a[i]; 
 
        e = { z, fval,abs(fval) }; 
        return e; 
    }; 

A suitable stopping criterion for a root. 
In [8] they go over many different techniques to compute a suitable stopping criterion. See also 
[1].  Many roots finders can use the method used by Adams [5] or Hitching [6] to find a suitable 
stopping criterion for polynomials with either real or complex coefficients. 
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When doing the iterative method, you will at some point need to consider what stopping criteria 
you want to apply for your root finders. Since most iterative root finders use the evaluation of the 
polynomial to progress it is only natural to continue our search until the evaluation of P(z) is 
close enough to 0 to accept the root at that point.  
 

Error in arithme c opera ons 
J.H.Wilkinson in  [7] has shown that the errors in performing algebraic operations are bound by: 
 

ε<½β1-t, β is the base, and t is the precision (assuming round to nearest)  
 

Notice ½β1-t= β-t 
 
For the Intel microprocessor series and the IEE754 standard for floating point operations β= 2 
and t=53 for 64bit floating point arithmetic or 2-53 
 

A simple upper bound 
A simple upper bound can then be found using the above information for a polynomial with 
degree n.  
 
 Polynomials 
Number of operations: Real coefficient Complex coefficients 
Real point |ao|·2n·2-53 |ao|·4n·2-53 
Complex point |ao|·4n·2-53 |ao|·6n·2-53 

 

A be er upper bound 
In this category, we have among others Adams [5] and Grant & Hitchins [6] stopping criteria for 
polynomials. 
Polynomial root finders usually can handle polynomials with both real and complex coefficients 
evaluated at a real or complex number. Since Adams' stopping criterion is for Polynomials with 
real coefficients, we will use Grant & Hitchins bound which is similar but for Polynomials with 
complex coefficients. 
 
Grant & Hitchins stopping criteria for polynomials with complex coefficients 
Polynomial with complex coefficients zn evaluated at a complex point z, using Horner’s method. 
Grant and Hitchins [6] derive an upper error bound for the errors in evaluating the polynomial as 
follows using the recurrence where z=x+iy and the complex coefficients are represented as 
an+ibn: 
 

cn=an,  dn=bn,  gn=1,  hn=1; 
ck=xck+1-ydk+1+ak, k=n-1,...,0 
dk=yck+1+xdk+1+bk 

gk=|x|(gk+1+|ck+1|)+|y|(hk+1+|dk+1|)+|ak|+2|ck| 
hk=|y|(gk+1+|ck+1|)+|x|(hk+1+|dk+1|)+|bk|+2|dk| 
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Now the error is (g0+ih0)ɛ, where ɛ= ½ β1-t. Now since the recurrence in itself introduces error 
[6] safeguard the calculation by adding the upper bound for the rounding errors in the recurrence, 
so we have the bound for evaluating a complex polynomial at a complex point: 
 
 e=(g0+ih0 )ε(1+ε)5n, where ε=½β1-t 
 
There exist other methods that are also useful to consider, see [1]  
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with complex coefficient a[] at a complex point z. 
    // (Grant & Hitchins test) 
    auto upperbound = [](const vector<complex<double>>& a, complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double nc, oc, nd, od, ng, og, nh, oh, t, u, v, w, e; 
        double tol = 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 1); 
      
        oc = a[0].real(); 
        od = a[0].imag(); 
         og = oh = 1.0; 
        t = fabs(z.real());  
        u = fabs(z.imag()); 
        for (size_t i = 1; i <= n; i++) 
        { 
            nc = z.real() * oc - z.imag() * od + a[i].real(); 
            nd = z.imag() * oc + z.real() * od + a[i].imag(); 
            v = og + fabs(oc);  
            w = oh + fabs(od); 
            ng = t * v + u * w + fabs(a[i].real()) + 2.0 * fabs(nc); 
            nh = u * v + t * w + fabs(a[i].imag()) + 2.0 * fabs(nd); 
            og = ng;  
            oh = nh; 
            oc = nc;  
            od = nd; 
        } 
        e = abs(complex<double>(ng, nh)) * pow(1 + tol, 5 * n) * tol; 
        return e; 
    }; 

Polynomial De lation strategy 
After we have found a root, we need to make a synthetic division of that root up in the current 
Polynomial to reduce the polynomial degree and prepare to find the next root. The question then 
arises do you use Forward or Backward Deflation?  
Wilkinson [7] has shown that to have a stable deflation process you should choose forward 
deflation if you find the roots of the polynomial in increasing magnitude and always deflate the 
polynomial with the lowest magnitude root first and of course, the opposite backward deflation 
when finding the roots with decreasing magnitude. 
To do forward deflation we try to solve the equations starting with the highest coefficients an: 
 

anzn+an-1zn-1+⋯+a1z+a0=(bn-1zn-1+bn-2zn-2+⋯+b1z+b0)(z-R) 
 
And R is the root.  
Now solve it for b’s you get the recurrence: 
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bn-1=an 
bk=ak+1+R∙bk+1,  k=n-2,…,0 

 
This simple algorithm works well for polynomials with real coefficients and real roots or 
complex coefficients with complex roots using the same recurrence just using complex 
arithmetic instead. 
 

// Deflate polynomial and compute new coefficients in coeff 
        z = 0; 
        for (int j = 0; j < n; j++) 
            z = coeff[j] = z * pz.z + coeff[j]; 
        coeff.resize(n); 
 

The Implementation of K. Madsen Newton Algorithm 
The implementation of this root finder follows the method as first described by K. Madsen in [2]. 
Which was an AlgolW implementation. This implementation below is a modified version 
translated into C++ and uses a more modern structure including the C++ STL library. The first 
step is to lay out the process. 
Of course, the most interesting part is the section “Start the Newton iteration” Madsen [2] 
provides a very fast and efficient implementation that not only finds the roots in surprisingly few 
iterations but also handles the usual issues with the Newton method. I do not plan to repeat what 
is so excellent as described in [2] but just highlight some interesting areas of his Newton 
implementation. 
 

1) First, we eliminate simple roots (roots equal to zero) 
2) Then we find a suitable starting point to start our Newton Iteration, this also includes 

termination criteria based on an acceptable value of P(x) where we will stop the current 
iteration. 

3) Start the Newton iteration 
a. The first step is to find the dzn=P(zn)/P’(zn) and of course, decide what should happen 

if P’(zn) is zero. When this condition arises, it is most often due to a local minimum 
and the best course of action is to alter the direction with a factor   
dzn=dzn(0.6+i0.8)m.  This is equivalent to rotating the direction with an odd degree of 
53 degrees and multiplying the direction with the factor m. A suitable value for m =5 
is reasonable when this happens. 

b. Furthermore, it is easy to realize that if P’(zn)~0. You could get some unreasonable 
step size of dzn and therefore introduced a limiting factor that reduced the current step 
size if abs(dzn)>5·abs(dzn-1) than the previous iteration's step size. Again, you alter 
the direction with dzn=dzn(0.6+i0.8)5(abs(dzn-1)/abs(dzn)). 

c. These two modifications (a and b) make his method very resilient and make it always 
converge to a root. 

d. The next issue is to handle the issue with multiplicity > 1 which will slow the 2nd 
order convergence rate down to a linear convergence rate. After a suitable dzn is 

found and a new 𝑧 = 𝑧 −
( )

( )
 we then look to see if P(zn+1)>P(zn):  If so we 

look at a revised zn+1=zn-0.5dzn and if P(zn+1)≥P(zn) then he used the original zn+1 as 
the new starting point for the next iteration. If not then we accept zn+1 as a better 
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choice and continue looking at a newly revised zn+1=zn-0.25dzn. If on the other hand 
the new  P(zn+1)≥P(zn) we used the previous zn+1 as a new starting point for the next 
iterations. If not then we assume we are nearing a new saddle point and the direction 
is altered with  dzn=dzn(0.6+i0.8) and we use 𝑧 = 𝑧 − 𝑑𝑧  as the new starting 
point for the next iteration. 
if on the other hand  𝑃(𝑧 ) ≤ 𝑃(𝑧 ): Then we are looking in the right direction and 
we then continue stepping in that direction using zn+1=zn-mdzn, m=2,..,n as long as 
𝑃(𝑧 ) ≤ 𝑃(𝑧 ) and use the best m for the next iterations. The benefit of this 
process is that if there is a root with the multiplicity of m then m will also be the best 
choice for the stepping size and this will maintain the 2nd-order convergence rate even 
for multiple roots. 

4) Processes a-d continue until the stopping criteria are reached where after the root zn is 
accepted and deflated up in the Polynomial. A new search for a root using the deflated 
Polynomial is initiated. 

 
In [2] they divide the iterations into two stages. Stage 1 & Stage 2. In stage 1 we are trying to get 
into the convergence circle where we are sure that the Newton method will converge towards a 
root. When we get into that circle, we automatically switch to stage 2. In stage 2 we skip step d) 

and just use an unmodified Newton step 𝑧 = 𝑧 −
( )

( )
 until the stopping criteria have been 

satisfied. In case we get outside the convergence circle, we switch back to stage 1 and continue 
the iteration. 
In [2] they use the following criteria to switch to stage 2 based on the theorem 7.1 from 

Ostrowski [3] that states if K is a circle with center 𝑤 −
( )

( )
 And radius   |

( )

( )
| 

Then we have guarantee convergence if the following two conditions are satisfied: 
 
 𝑝(𝑤)𝑝 (𝑤) ≠ 0    𝑎𝑛𝑑 

2|
𝑝(𝑤)

𝑝′(𝑤)
| ∙ max|𝑝 (𝑧)| ≤ |𝑝′(𝑤)| 

 

 

The Newton iterations with initial value w will lead to a convergence of zero within the circle K. 
To simplify the calculation we make 2 substitutes, since max|𝑝 (𝑧)| ≈ |𝑝′′(𝑤)| and instead of 

p”(w) we replace it with a difference approximation 𝑝′′(𝑤) ≈
( ) ( )

 

 
Now we have everything we need to determine when to switch to stage 2. 
 

The C++ code 
The C++ code below finds the Polynomial roots with Polynomial with complex coefficients. The 
same algorithm can be used if the Polynomial coefficients are real. See [1] for details.  
 
/* 
 ******************************************************************************* 
 * 
 *                       Copyright (c) 2023 
 *                       Henrik Vestermark 
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 *                       Denmark, USA 
 * 
 *                       All Rights Reserved 
 * 
 *   This source file is subject to the terms and conditions of  
 *   Henrik Vestermark Software License Agreement which restricts the manner 
 *   in which it may be used. 
 * 
 ******************************************************************************* 
*/ 
 
/* 
 ******************************************************************************* 
 * 
 * Module name     :   Newton.cpp 
 * Module ID Nbr   : 
 * Description     :   Solve n degree polynomial using Newton's (Madsen) method 
 * -------------------------------------------------------------------------- 
 * Change Record   : 
 * 
 * Version Author/Date  Description of changes 
 * -------  ------------- ---------------------- 
 * 01.01 HVE/24Sep2023 Initial release 
 * 
 * End of Change Record 
 * -------------------------------------------------------------------------- 
*/ 
 
// define version string  
static char _VNEWTON_[] = "@(#)Newton.cpp 01.01 -- Copyright (C) Henrik Vestermark"; 
 
#include <algorithm> 
#include <vector> 
#include <complex> 
#include <iostream> 
#include <functional> 
 
using namespace std; 
constexpr int       MAX_ITER = 50; 
 
// Find all polynomial zeros using a modified Newton method 
// 1) Eliminate all simple roots (roots equal to zero) 
// 2) Find a suitable starting point 
// 3) Find a root using Newton 
// 4) Divide the root up in the polynomial reducing its order with one 
// 5) Repeat steps 2 to 4 until the polynomial is of the order of two whereafter the 
remaining one or two roots are found by the direct formula 
// Notice: 
//      The coefficients for p(x) is stored in descending order. coefficients[0] is 
a(n)x^n, coefficients[1] is a(n-1)x^(n-1),...,  coefficients[n-1] is a(1)x, 
coefficients[n] is a(0) 
// 
static vector<complex<double>> PolynomialRoots(const vector<complex<double>>& 
coefficients) 
{ 
    struct eval { complex<double> z{}; complex<double> pz{}; double apz{}; }; 
    const complex<double> complexzero(0.0);  // Complex zero (0+i0) 
    size_t n;       // Size of Polynomial p(x)   
    eval pz;        // P(z) 
    eval pzprev;    // P(zprev) 
    eval p1z;       // P'(z) 
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    eval p1zprev;   // P'(zprev) 
    complex<double> z;      // Use as temporary variable 
    complex<double> dz;     // The current stepsize dz 
    int itercnt;    // Hold the number of iterations per root 
    vector<complex<double>> roots;  // Holds the roots of the Polynomial 
    vector<complex<double>> coeff(coefficients.size()); // Holds the current 
coefficients of P(z) 
 
    copy(coefficients.begin(), coefficients.end(), coeff.begin()); 
    // Step 1 eliminate all simple roots 
    for (n = coeff.size() - 1; n > 0 && coeff.back() == complexzero; --n) 
        roots.push_back(complexzero);  // Store zero as the root 
 
    // Compute the next starting point based on the polynomial coefficients 
    // A root will always be outside the circle from the origin and radius min 
    auto startpoint = [&](const vector<complex<double>>& a) 
    { 
    const size_t n = a.size() - 1; 
    double a0 = log(abs(a.back())); 
    double min = exp((a0 - log(abs(a.front()))) / static_cast<double>(n)); 
 
    for (size_t i = 1; i < n; i++) 
        if (a[i] != complexzero) 
        { 
            double tmp = exp((a0 - log(abs(a[i]))) / static_cast<double>(n - i)); 
            if (tmp < min) 
                min = tmp; 
        } 
 
    return min*0.5; 
    }; 
 
    // Evaluate a polynomial with complex coefficients a[] at a complex point z and 
    // return the result  
    // This is the Horner's methods 
    auto horner = [](const vector<complex<double>>& a, const complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> fval=a.front(); 
        eval e; 
 
        for (size_t i = 1; i <= n; i++) 
            fval = fval * z + a[i]; 
 
        e = { z, fval,abs(fval) }; 
        return e; 
    }; 
 
    // Calculate an upper bound for the rounding errors performed in a 
    // polynomial with complex coefficient a[] at a complex point z. 
    // (Grant & Hitchins test) 
    auto upperbound = [](const vector<complex<double>>& a, complex<double> z) 
    { 
        const size_t n = a.size() - 1; 
        double nc, oc, nd, od, ng, og, nh, oh, t, u, v, w, e; 
        double tol = 0.5 * pow((double)_DBL_RADIX, -DBL_MANT_DIG + 1); 
      
        oc = a[0].real(); 
        od = a[0].imag(); 
        og = oh = 1.0; 
        t = fabs(z.real());  
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        u = fabs(z.imag()); 
        for (size_t i = 1; i <= n; i++) 
        { 
            nc = z.real() * oc - z.imag() * od + a[i].real(); 
            nd = z.imag() * oc + z.real() * od + a[i].imag(); 
            v = og + fabs(oc);  
            w = oh + fabs(od); 
            ng = t * v + u * w + fabs(a[i].real()) + 2.0 * fabs(nc); 
            nh = u * v + t * w + fabs(a[i].imag()) + 2.0 * fabs(nd); 
            og = ng;  
            oh = nh; 
            oc = nc;  
            od = nd; 
        } 
        e = abs(complex<double>(ng, nh)) * pow(1 + tol, 5 * n) * tol; 
        return e; 
    }; 
 
    // Do Newton iteration for polynomial order higher than 2 
    for (; n > 2; --n) 
    { 
        const double Max_stepsize = 5.0; // Allow the next step size to be up to 5 times 
larger than the previous step size 
        const complex<double> rotation = complex<double>(0.6, 0.8);  // Rotation amount 
        double r;               // Current radius 
        double rprev;           // Previous radius 
        double eps;             // The iteration termination value 
        bool stage1 = true;     // By default it start the iteration in stage1 
        int steps = 1;          // Multisteps if > 1 
        vector<complex<double>> coeffprime; 
 
        // Calculate coefficients of p'(x) 
        for (int i = 0; i < n; i++) 
            coeffprime.push_back(coeff[i] * complex<double>(double(n - i), 0.0)); 
 
        // Step 2 find a suitable starting point z 
        rprev = startpoint(coeff);      // Computed startpoint 
        z = coeff[n - 1] == complexzero ? complex<double>(1.0) : -coeff[n] / coeff[n - 
1]; 
        z *= complex<double>(rprev) / abs(z); 
 
        // Setup the iteration 
        // Current P(z) 
        pz = horner(coeff, z); 
                 
        // pzprev which is the previous z or P(0) 
        pzprev.z = complex<double>(0); 
        pzprev.pz = coeff[n]; 
        pzprev.apz = abs(pzprev.pz); 
 
        // p1zprev P'(0) is the P'(0) 
        p1zprev.z = pzprev.z; 
        p1zprev.pz = coeff[n - 1];       // P'(0) 
        p1zprev.apz = abs(p1zprev.pz); 
 
        // Set previous dz and calculate the radius of operations. 
        dz = pz.z;      // dz=z-zprev=z since zprev==0 
        r = rprev *= Max_stepsize; // Make a reasonable radius of the maximum step size 
allowed 
        // Preliminary eps computed at point P(0) by a crude estimation 
        eps = 6 * n * pzprev.apz * pow((double)_DBL_RADIX, -DBL_MANT_DIG); 
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        // Start iteration and stop if z doesnt change or apz <= eps 
        // we do z+dz!=z instead of dz!=0. if dz does not change z then we accept z as a 
root 
        for (itercnt = 0; pz.z + dz != pz.z && pz.apz > eps && itercnt < MAX_ITER; 
itercnt++) 
        { 
            // Calculate current P'(z) 
            p1z = horner(coeffprime, pz.z); 
            if (p1z.apz == 0.0)                 // P'(z)==0 then rotate and try again 
                dz *= rotation * complex<double>(Max_stepsize);  // Multiply with 5 to 
get away from saddlepoint 
            else 
            { 
                dz = pz.pz / p1z.pz;  // next dz 
                // Check the Magnitude of Newton's step 
                r = abs(dz); 
                if (r > rprev) // Large than 5 times the previous step size 
                {   // then rotate and adjust step size to prevent wild step size near 
P'(z) close to zero 
                    dz *= rotation * complex<double>(rprev/r); 
                    r = abs(dz); 
                } 
                rprev = r * Max_stepsize;  // Save 5 times the current step size for the 
next iteration check of reasonable step size 
                // Calculate if stage1 is true or false. Stage1 is false if the Newton 
converge otherwise true 
                z = (p1zprev.pz - p1z.pz) / (pzprev.z - pz.z); 
                stage1 = (abs(z) / p1z.apz > p1z.apz / pz.apz / 4.0) || (steps != 1); 
            } 
            // Step accepted. Save pz in pzprev 
            pzprev = pz; 
 
         z = pzprev.z - dz;      // Next z 
            pz = horner(coeff, z); //ff = pz.apz; 
            steps = 1; 
            if (stage1) 
            {  // Try multiple steps or shorten steps depending if P(z) is an 
improvement or not P(z)<P(zprev) 
                bool div2; 
                complex<double> zn; 
                eval npz; 
 
                zn = pz.z; 
                for (div2 = pz.apz > pzprev.apz; steps <= n; ++steps) 
                { 
                    if (div2 == true) 
                    {  // Shorten steps 
                        dz *= complex<double>(0.5); 
                        zn = pzprev.z - dz; 
                    } 
                    else 
                        zn -= dz;  // try another step in the same direction 
 
                    // Evaluate new try step 
                    npz = horner(coeff, zn); 
                    if (npz.apz >= pz.apz) 
                        break; // Break if no improvement 
 
                    // Improved => accept step and try another round of step 
                    pz = npz; 
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                    if (div2 == true && steps == 2) 
                    {   // To many shorten steps => try another direction and break 
                        dz *= rotation; 
                        z = pzprev.z - dz; 
                        pz = horner(coeff, z); 
                        break; 
                    } 
                } 
            } 
            else 
            {   // calculate the upper bound of error using Grant & Hitchins's test for 
complex coefficients 
                // Now that we are within the convergence circle. 
                eps = upperbound(coeff, pz.z); 
            } 
        } 
 
   // Check if there is a very small residue in the imaginary part by trying 
        // to evaluate P(z.real). if that is less than P(z). We take that z.real() is a 
better root than z. 
        z = complex<double>(pz.z.real()); 
        pzprev = horner(coeff, z); 
        if (pzprev.apz <= pz.apz) 
            pz = pzprev; 
 
        // Save the root 
        roots.push_back(pz.z); 
 
       // Deflate polynomial and compute new coefficients in coeff 
       z = complex<double>(0); 
       for (int j = 0; j < n; j++) 
           z = coeff[j] = z * pz.z + coeff[j]; 
       coeff.resize(n); 
      /* 
        std::transform(coeff.begin(), coeff.end() - 1, coeff.begin() + 1, coeff.begin(), 
            [pz](const complex<double>& coeff, const complex<double>& next_coeff) { 
                return coeff * pz.z + next_coeff; 
        }); 
        coeff.resize(n);  
        */ 
    }   // End Iteration 
 
    // Solve any remaining linear or quadratic polynomial 
    // For Polynomial with complex coefficients a[],  
    // The complex solutions are stored in the back of the roots 
    auto quadratic = [&](const std::vector<complex<double>>& a) 
    { 
        const size_t n = a.size() - 1; 
        complex<double> v; 
 
        // Notice a[0] is !=0 since all roots=zero has been captured previously 
        if (n == 1) 
            roots.push_back(-a[1]/a[0]); 
        else 
        { 
            if (a[1] == complexzero) 
            { 
                v = sqrt(-a[2] / a[0]); 
                roots.push_back(v); 
                roots.push_back(-v); 
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            } 
            else 
            { 
                v = sqrt(complex<double>(1.0)-
complex<double>(4.0)*a[0]*a[2]/(a[1]*a[1])); 
                if (v.real() < 0) 
                    v = (complex<double>(-1.0) - v) * a[1] / (complex<double>(2.0) * 
a[0]); 
                else 
                    v = (complex<double>(-1.0) + v) * a[1] / (complex<double>(2.0) * 
a[0]); 
                roots.push_back(v); 
                roots.push_back(a[2] / (a[0] * v)); 
            } 
        } 
        return; 
    }; 
 
    if (n > 0) 
        quadratic(coeff); 
 
    return roots; 
} 

 

Example 1. 
Here is an example of how the above source code is working. 
 
For the complex Polynomial: 
+1x^3+(-13-i1)x^2+(44+i12)x+(-32-i32) 
Start Newton Itera on for Polynomial=+1x^3+(-13-i1)x^2+(44+i12)x+(-32-i32) 
 Stage 1=>Stop Condi on. |f(z)|<3.01e-14 
 Start    : z[1]=(0.4+i0.2) dz=(4.31e-1+i2.46e-1) |f(z)|=2.6e+1 
Itera on: 1 
 Newton Step:  z[1]=(1+i0.7) dz=(-5.91e-1-i4.63e-1) |f(z)|=6.3e+0 
 Func on value decrease=>try mul ple steps in that direc on 
 Try Step:  z[1]=(2+i1) dz=(-5.91e-1-i4.63e-1) |f(z)|=1.1e+1 
         : No improvement=>Discard last try step 
Itera on: 2 
 Newton Step:  z[2]=(1.0+i1.0) dz=(-1.83e-2-i2.99e-1) |f(z)|=9.0e-1 
 In Stage 2=>New Stop Condi on: |f(z)|<4.79e-14 
Itera on: 3 
 Newton Step:  z[2]=(1.0+i1.0) dz=(4.07e-2+i8.94e-3) |f(z)|=1.8e-2 
 In Stage 2=>New Stop Condi on: |f(z)|<4.65e-14 
Itera on: 4 
 Newton Step:  z[4]=(1.000+i1.000) dz=(-6.04e-4-i5.04e-4) |f(z)|=6.3e-6 
 In Stage 2=>New Stop Condi on: |f(z)|<4.65e-14 
Itera on: 5 
 Newton Step:  z[8]=(1.0000000+i1.0000000) dz=(2.39e-8-i2.81e-7) |f(z)|=8.2e-13 
 In Stage 2=>New Stop Condi on: |f(z)|<4.65e-14 
Itera on: 6 
 Newton Step:  z[14]=(1.0000000000000+i1.0000000000000) dz=(3.32e-14+i1.53e-14) 
|f(z)|=7.9e-15 
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 In Stage 2=>New Stop Condi on: |f(z)|<4.65e-14 Stop Criteria sa sfied a er 6 Itera ons Final 
Newton  z[14]=(1.0000000000000+i1.0000000000000) dz=(3.32e-14+i1.53e-14) |f(z)|=7.9e-15 
Altera on=0% Stage 1=17% Stage 2=83% 
 Deflate the complex root z=(0.9999999999999999+i0.9999999999999998) 
Solve Polynomial=+(1)x^2+(-12-i2.220446049250313e-16)x+(32+i3.552713678800501e-15) directly 
Using the Newton Method, the Solu ons are: 
X1=(0.9999999999999999+i0.9999999999999998) 
X2=(8.000000000000002-i4.440892098500625e-16) 
X3=(3.999999999999999+i6.661338147750937e-16) 
 

Example 2. 
The same example just with a double root at z=(1+i). We see that each step is a double step in 
line with a multiplicity of 2 for the first root. 
 
For the complex Polynomial: 
+1x^3+(-10-i2)x^2+(16+i18)x+(-i16) 
Start Newton Itera on for Polynomial=+1x^3+(-10-i2)x^2+(16+i18)x+(-i16) 
 Stage 1=>Stop Condi on. |f(z)|<1.07e-14 
 Start    : z[1]=(0.2+i0.2) dz=(2.48e-1+i2.21e-1) |f(z)|=9.1e+0 
Itera on: 1 
 Newton Step:  z[1]=(0.6+i0.6) dz=(-3.76e-1-i3.54e-1) |f(z)|=2.4e+0 
 Func on value decrease=>try mul ple steps in that direc on 
 Try Step:  z[1]=(1+i0.9) dz=(-3.76e-1-i3.54e-1) |f(z)|=3.7e-2 
         : Improved=>Con nue stepping 
 Try Step:  z[1]=(1+i1) dz=(-3.76e-1-i3.54e-1) |f(z)|=1.5e+0 
         : No improvement=>Discard last try step 
Itera on: 2 
 Newton Step:  z[2]=(1.0+i0.96) dz=(3.68e-4-i3.61e-2) |f(z)|=9.2e-3 
 Func on value decrease=>try mul ple steps in that direc on 
 Try Step:  z[2]=(1.0+i1.0) dz=(3.68e-4-i3.61e-2) |f(z)|=9.6e-7 
         : Improved=>Con nue stepping 
 Try Step:  z[2]=(1.0+i1.0) dz=(3.68e-4-i3.61e-2) |f(z)|=9.2e-3 
         : No improvement=>Discard last try step 
Itera on: 3 
 Newton Step:  z[5]=(1.0002+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=2.4e-7 
 Func on value decrease=>try mul ple steps in that direc on 
 Try Step:  z[5]=(1.0000+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=8.9e-16 
         : Improved=>Con nue stepping 
 Try Step:  z[5]=(0.99982+i0.99997) dz=(1.82e-4+i2.89e-5) |f(z)|=2.4e-7 
         : No improvement=>Discard last try step 
Stop Criteria sa sfied a er 3 Itera ons 
Final Newton  z[5]=(1.0000+i1.0000) dz=(1.82e-4+i2.89e-5) |f(z)|=8.9e-16 
Altera on=0% Stage 1=100% Stage 2=0% 
 Deflate the complex root z=(0.9999999913789768+i0.9999999957681246) 
Solve Polynomial=+(1)x^2+(-9.000000008621024-
i1.0000000042318753)x+(8.000000068968186+i8.000000033855004) directly 
Using the Newton Method, the Solu ons are: 
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X1=(0.9999999913789768+i0.9999999957681246) 
X2=(8.000000000000004-i2.6645352478243948e-15) 
X3=(1.0000000086210223+i1.0000000042318753) 
 

Conclusion 
Presented is a modified Newton method originally based on [2] making the Newton method 
more efficient and stable for finding polynomial roots with complex coefficients. The same 
method can easily be applied to Polynomials with real coefficients.  
This was part one, part two handled the case where we only found roots in a polynomial with 
real coefficients. However, the root can still be complex. Part three shows the adjustment needed 
to implement a higher-order method e.g. Halley. Part 4 how easy it is to fit another method like 
Laguerre’s into the same framework.  
A web-based Polynomial solver can be found on Polynomial roots that demonstrate many of 
these methods in action. 
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